Singular and invariant matrices under the $QR$ transformation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix shapes invariant under the symmetric QR algorithm

It is shown, which zero patterns of symmetric matrices are preserved under the QR algorithm.

متن کامل

Invariant Sequences under Binomial Transformation

The classical binomial inversion formula states that an = Hk=o(k)(~ty^k ( ~ ®> ̂ 2,...) if and only if hn = Tl=Q(l)(-l)ak (n = 0,1,2,...). In this paper we study those sequences {an} such that Hk=0(l)(-lfak = ±an (n = 0,1? 2,...). If EJU(Z)H)*"* = <**("* °), we say that {aj is an invariant sequence. If Efc=0(*)(~l)** = -an (n>0)9 we say that {an} is an inverse invariant sequence. Throughout this...

متن کامل

A QR-method for computing the singular values via semiseparable matrices

A QR–method for computing the singular values via semiseparable matrices. Abstract The standard procedure to compute the singular value decomposition of a dense matrix, first reduces it into a bidiagonal one by means of orthogonal transformations. Once the bidiagonal matrix has been computed, the QR–method is applied to reduce the latter matrix into a diagonal one. In this paper we propose a ne...

متن کامل

Notes on Eigenvalues, Singular Values and QR

for some nonzero vector x called an eigenvector. This is equivalent to writing (λI − A)x = 0 so, since x 6= 0, A− λI must be singular, and hence det(λI − A) = 0. From the (complicated!) definition of determinant, it follows that det(λI−A) is a polynomial in the variable λ with degree n, and this is called the characteristic polynomial. By the fundamental theorem of algebra (a nontrivial result)...

متن کامل

Invariant Principal Order Ideals under Foata's Transformation

Let Φ denote Foata’s second fundamental transformation on permutations. For a permutation σ in the symmetric group Sn, let Λ̃σ = {π ∈ Sn : π 6w σ} be the principal order ideal generated by σ in the weak order 6w. Björner and Wachs have shown that Λ̃σ is invariant under Φ if and only if σ is a 132-avoiding permutation. In this paper, we consider the invariance property of Φ on the principal order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1966

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1966-0213005-9